Single index quantile regression for heteroscedastic data

نویسندگان

  • Eliana Christou
  • Michael G. Akritas
چکیده

Quantile regression (QR) is becoming increasingly popular due to its relevance in many scientific investigations. Linear and nonlinear QR models have been studied extensively, while recent research focuses on the single index quantile regression (SIQR) model. Compared to the single index mean regression problem, the fitting and the asymptotic theory of the SIQR model are more complicated due to the lack of closed form expressions for estimators of conditional quantiles. Consequently, the proposed methods are necessarily iterative. We propose a non-iterative estimation algorithm, and derive the asymptotic distribution of the proposed estimator under heteroscedasticity. For identifiability, we use a parametrization that sets the first coefficient to 1 instead of the typical condition which restricts the norm of the parametric component. This distinction is more than simply cosmetic as it affects, in a critical way, the correspondence between the estimator derived and the asymptotic theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection in Single Index Quantile Regression for Heteroscedastic Data

Quantile regression (QR) has become a popular method of data analysis, especially when the error term is heteroscedastic, due to its relevance in many scientific studies. The ubiquity of high dimensional data has led to a number of variable selection methods for linear/nonlinear QR models and, recently, for the single index quantile regression (SIQR) model. We propose a new algorithm for simult...

متن کامل

Semiparametric modeling and estimation of heteroscedasticity in regression analysis of cross-sectional data

Abstract: We consider the problem of modeling heteroscedasticity in semiparametric regression analysis of cross-sectional data. Existing work in this setting is rather limited and mostly adopts a fully nonparametric variance structure. This approach is hampered by curse of dimensionality in practical applications. Moreover, the corresponding asymptotic theory is largely restricted to estimators...

متن کامل

Simultaneous Linear Quantile Regression: A Semiparametric Bayesian Approach

We introduce a semi-parametric Bayesian framework for a simultaneous analysis of linear quantile regression models. A simultaneous analysis is essential to attain the true potential of the quantile regression framework, but is computationally challenging due to the associated monotonicity constraint on the quantile curves. For a univariate covariate, we present a simpler equivalent characteriza...

متن کامل

Testing for Change Points Due to a Covariate Threshold in Quantile Regression

We develop a new procedure for testing change points due to a covariate threshold in regression quantiles. The proposed test is based on the CUSUM of the subgradient of the quantile objective function and requires fitting the model only under the null hypothesis. The critical values can be obtained by simulating the Gaussian process that characterizes the limiting distribution of the test stati...

متن کامل

Constructing inverse probability weights for continuous exposures: a comparison of methods.

Inverse probability-weighted marginal structural models with binary exposures are common in epidemiology. Constructing inverse probability weights for a continuous exposure can be complicated by the presence of outliers, and the need to identify a parametric form for the exposure and account for nonconstant exposure variance. We explored the performance of various methods to construct inverse p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2016